www.rsc.org/dalton

Pd(II) Complexes with thiacalix[4]-arene and -aniline; subtle, but distinct influences of phenol and aniline units on the 3-D structure †

Hiroshi Katagiri,*^a* **Naoya Morohashi,‡***^a* **Nobuhiko Iki,****^a* **Chizuko Kabuto** *^b* **and Sotaro Miyano ****^a ^a Department of Biomolecular Engineering, Graduate School of Engineering,*

Tohoku University, Aramaki-Aoba 07, Aoba-ku, Sendai 980-8579, Japan. E-mail: iki@orgsynth.che.tohoku.ac.jp. E-mail: miyano@orgsynth.che.tohoku.ac.jp ^b Instrumental Analysis Center for Chemistry, Graduate School of Science,

Tohoku University, Aoba, Aoba-ku, Sendai 980-8578, Japan. E-mail: kabuto@kiki.chem.tohoku.ac.jp

Received 27th August 2002, Accepted 2nd December 2002 First published as an Advance Article on the web 14th January 2003

The $Pd(i)$ complexes of thiacalix[4]aniline (TCAn) and thiacalix[4]arene (TCAr), in which four aniline and phenol units are linked by four sulfides at the o, o' -positions, respectively, were prepared by simply heating the ligands with $Pd(\Pi)(OAc)_2$ in CHCl₃ or benzene at reflux and structurally characterized by X-ray diffraction methods. In TCAn, two thiacalix ligands adopting a pinched-cone conformation are fused at the narrower rims to coordinate to two $Pd(n)$ ions by amide NH⁻ and the adjacent S atoms. In contrast for TCAr, two ligands coordinate to two $Pd(n)$ ions with phenolate O⁻ and thioether S atoms at the narrower rims. Four sets of hydrogen bonding between the O^- and free OH cause a deviation of the Pd(II) centers from the square coordination plane and also lead the conformation of the calix to be more cone-like to provide enough space to accommodate guest $CH₃CN$ molecules.

Introduction

Control of the three-dimensional structure of molecules by non-covalent interactions such as coordination and hydrogen bonding is a major topic in supramolecular chemistry mimicking the function of biomolecules.**¹** Owing to the macrocyclic structure and ease of modification of the phenol unit, calixarenes have been utilized as a scaffold to construct artificial enzymes *via* introduction of functional groups responsible for molecular recognition and chemical transformation.**²** Recently, we have reported a facile one-step synthesis of *p-tert*-butylthiacalix^[4] arene (TCAr)³ endowed with four bridging-sulfurs in place of the methylene bridges of "classical" calixarenes, providing additional binding sites for metal ions.**⁴** Thus, the coordination chemistry of TCAr has been studied by solvent extraction⁵ and crystallography⁶ with a wide variety of metal ions. Very recently, we synthesized another member of the calix family, *p-tert*-butylthiacalix[4]aniline (TCAn), by replacing the phenolic OH of TCAr with $NH₂$,⁷ which should open a new host–guest chemistry based on aniline rather than the conventional calixarene chemistry based on phenol. Consequently, TCAn has been revealed to have a specific binding ability to $Pd(II)$ and $Au(III)$ ions among 41 kinds of metal ions examined,**⁸** making a sharp contrast to TCAr which binds to a wide variety of soft metal ions.**⁵** The clear difference in the selectivity prompted us to isolate and characterize the structure of the $2:2$ TCAn-Pd(II) complex, revealing the coordination of the amide N as well as the thioether S. Herein we report the details of the structural features of the complex, comparing with a similar $2:2$ complex of TCAr-Pd(II) obtained recently, which contrasts the difference between the characteristics of phenol and aniline functions to bring about differences in the three-dimensional structure and inclusion ability of the thiacalix scaffolds.

Results and discussion

The $Pd(n)$ complex of TCAn (H_4 tcan) was readily synthesized by heating a mixture of Pd(OAc), and TCAn in chloroform at reflux. A single crystal of the complex was revealed to be [Pd**2**(H**2**tcan)**2**] with two TCAn ligands being fused at the narrower rim by coordination to two $Pd(\Pi)$ ions (Fig. 1a). The structural features are summarized in Table 1. The complex has approximate C_{2h} symmetry with an axis through two $Pd(\Pi)$ ions, showing that the two TCAn ligands are almost structurally identical. Interestingly, the TCAn ligand in the complex adopts a typical pinched-cone conformation, in which the torsion angles between two distal benzene rings are 122.6 and 4.3°. This contrasts sharply with the 1,3-alternate conformation of free TCAn in the solid state.⁷ Thus, it can be said that the binding of the two $Pd(\Pi)$ ions forces all four amino groups to come onto the same side of the plane containing the four S atoms. From the viewpoint of coordination, two TCAn ligands provide $Pd(II)$ ions with a *trans*-square planar coordination geometry *via* two sets of N,S atoms (see Table 1). Strikingly, each TCAn ligand is dianionic H**2**tcan**²**-, in which a pair of amino groups release each proton to make an amide -HN⁻ to coordinate to the $Pd(\Pi)$ center with one of the adjacent bridging sulfurs (Fig. 1b). In general, the formation of a $Pd(I)$ -amide complex is not so common, because $Pd(\Pi)$ with a filled d_{z} orbital is not

: 10.1039/ b208317e

 \dagger The X-ray structure for thiacalix[4]aniline-Pd($\scriptstyle\rm II$) was first reported in a communication.**⁸**

[‡] Present address: Department of Materials Science and Engineering, Faculty of Engineering, Yamagata University, 3–16, Jonan, Yonezawa, Yamagata 992–8510, Japan.

Table 1 Comparison of structural parameters of $Pd(\Pi)$ complexes of TCAn and TCAr

Properties	$TCAn (H_{4}tean)^{a}$	$TCAr(H_4)$
Complex formula	$[Pd2(H3tean)2]3$.3.5CHCl ₃	$[Pd,(H, \text{tcar}), 2CH, CN]$ 2CH, CN 2CH, ClCH, ClCH, Cl 6H, O
Molecular symmetry	Approx. C_{2h} symmetry (the axis through Pd–Pd)	Exact C_i symmetry (the center at the midpoint between two Pd atoms) and approx. C_{2h} symmetry (the axis through the center of the cone)
Conformation of calix ligands torsion angles between distal phenyl groups/° deviation of sulfur atoms from planarity/Å	Pinched cone 122.6, 4.3 0.043	Intermediate between cone and pinched cone 145.4, 75.0 0.605
Coordination geometry (with bond angles)	94.7°	86.4° 101.8° 83.5°
coordination bond lengths/Å deviation of the Pd atom from the coordination plane/Å	<i>trans</i> -square planar Pd-S 2.29, Pd-N 2.00 0.02	cis-square planar Pd-S 2.29, Pd-O 2.00 0.17

^{*a*} Values are averaged between two H_2 tcan²⁻ units or two Pd(II) centers.

Fig. 1 X-Ray structure of $[Pd_2(H_2tcan)_2]$ (a) and top view of a thiacalix framework with two $Pd(n)$ centers (b). Protons on carbon atoms are not shown for clarity. Protons of the free $NH₂$ groups were not fully found due to somewhat diffused peaks.

able to accept π -donation from the lone-pair electrons of the hard amide moiety.⁹ Therefore, Pd(II)-amide complexes have conventionally been prepared with the aid of a base to promote deprotonation of the amine followed by the introduction into a palladium complex to displace a leaving ligand.**¹⁰** In this context, $[Pd_2(H_2tcan)_2]$ is one of the quite rare examples of $Pd(II)$ -amide complexes to be assembled spontaneously by only heating a mixture of the components in chloroform. Also noted is the regioselectivity of the binding sites of $Pd(\Pi)$ to the TCAn ligand. Among eight possible neighboring N,S-donor sets, two sets consisting of two proximal $S(S^I, S^{II})$ and the distal two N atoms (N^I,N^{III}), which are linked to S^I and S^{II}, respectively, bind

Pseudo C_{2h} axis Hydrogen bonding

Fig. 2 X-Ray structure of $[Pd_2(H_2tcar)_2]$ (a) and top view of a thiacalix framework with two $Pd(II)$ centers (b). Protons on carbon atoms are not shown for clarity.

to the Pd(II) ions (Fig. 1b). This in turn brings H_2 tcan²⁻ an approximate σ -plane of the pseudo C_{2h} symmetry.

A Pd(II) complex of TCAr (H₄tcar) was also synthesized from a mixture of $Pd(OAc)$ ₂ and TCAr in benzene by the same method to form $[Pd_2(H_2)$ tcan)₂]. The solid-state structure of a single crystal of the complex shows a double cone structure fused at the narrower rim of the calix similar to $[{\rm Pd}_2({\rm H}_2\tan)_2]$ (Fig. 2). In addition, the composition of the complex was revealed to be $[Pd_2(H_2tcar)_2]$, implying that each TCAr ligand also releases two protons, to become the dianion H_2 tcar²⁻, to bind to two $Pd(II)$ ions. Besides these similarities, however, a scrutiny of the structures revealed some differences of $[Pd_2(H_1, \text{tcar})_2]$ from $[Pd_2(H_2, \text{tcan})_2]$:

(1) The molecular symmetry: although $[Pd_2(H_2tcar)_2]$ has an approximate C_{2h} symmetry, the pseudo symmetry axis passes through the center of the cone, not through the pair of $Pd(\mathbf{u})$ ions. Also, the complex has an exact C_i symmetry with a center of inversion at the midpoint of two Pd ions, meaning that the two TCAr ligands are identical.

(2) The three-dimensional structure of the calix ligand: H**2**tcar**²**- adopts a conformation intermediate between cone and pinched-cone (see Table 1 for the torsion angles), thus having enough space to accommodate a guest molecule, CH₃CN, in each cavity. This contrasts well with the rectangular cavity of [Pd**2**(H**2**tcan)**2**] with no guest molecules inside. Another noticeable feature concerning the molecular conformation is that the four bridging sulfur atoms of $[Pd_2(H_1) + C]$ deviate significantly from the mean plane in an up-down-up-down manner (Table 1). This is hardly observed in the $[Pd_2(H_2tcan)_2]$, suggesting that little strain should arise in the TCAn framework due to complexation.

(3) Coordination geometry: each $Pd(\Pi)$ center of $[Pd_2-$ (H**2**tcar)**2**] adopts an approximate square planar coordination geometry in a *cis*- rather than *trans*-fashion, with a pair of O-,S-donor sets provided by two H**2**tcar**²**-. In addition, the Pd(II) ion floats *ca.* 0.17 Å from the average plane of the four donor atoms.

(4) The regioselectivity of the $Pd(\Pi)$ -binding sites in the TCAr ligand: among eight possible O⁻,S-donor sets, two sets $(O^I, S^I \text{ and } O^{III}, S^{III})$ located distally to one another bind to the Pd(π) ions (Fig. 2b), which brings a pseudo C_{2h} axis as well as the above-mentioned "twist" of the S_4 plane to H_2 tcar²⁻.

(5) Hydrogen bonding: intramolecular hydrogen bonding was found between free phenolic OH and coordinating phenolate $O^-(O^{\text{IV}} \cdots O^{\text{I}}$ and $O^{\text{II}} \cdots O^{\text{III}})$: $O \cdots O =$ av. 2.58, O–H = av. 0.99, $O \cdots H = av.$ 1.61 Å, $O-H \cdots O = av.$ 169°. In contrast, no such interaction was found between free NH₂ and coordinating NH⁻ in [Pd₂(H₂tcan)₂]. Considering the higher basicity of NH⁻ than that of O^- , the higher ability of H-donation of OH than NH**2** may be the main contributor to hydrogen bonding.

Taking these facts into account, it is concluded that the difference in the three-dimensional structure of the complexes results from the regioselectivity of the metal-binding sites in the thiacalix ligands. What then determines the regioselectivity? In the $[Pd_2(H_2, can)_2]$ complex, the two $Pd(\Pi)$ centers tend to adopt planar-square coordination geometry by requiring the H₂tcan²⁻ to provide the same coordination environment on both sides of the pseudo σ-plane (Fig. 1b). On the other hand, the dianion H_2 tcar²⁻ is stabilized by two O–H \cdots O hydrogen bondings (Fig. 2b). Therefore, $Pd(II)$ prefers the binding sites to form pseudo C_2 symmetry in order not to disturb the existing hydrogen bonding. In other words, coordination to the $Pd(\Pi)$ ions and intramolecular hydrogen bonding play a "tug-of-war" to distort both the ligand moiety and the coordination geometry in the $[Pd_2(H_2)$ complex. On the whole, the phenol and aniline units in the thiacalix scaffold show good contrast in their differing roles to control the three-dimensional structure of the complexes *via* coordination and/or hydrogen bonding, which leads to the difference in the inclusion ability of the resulting complexes.

Experimental

Synthesis

TCAn-Pd(II) complex. To a solution of *p-tert*-butylthiacalix[4]aniline (H₄tcan, 0.12 g, 0.17 mmol) in CHCl₃ (15 ml) was added Pd(OAc)₂ (45 mg, 0.20 mmol) and the mixture was then refluxed for 72 h. The dark-red reaction mixture was evaporated to dryness and washed with benzene (20 ml) to give a crude product. Recrystallization from CHCl₃–MeOH solution afforded dark-green needles (31.0 mg, 23%). Single crystals for X-ray analysis were obtained by slow liquid diffusion of CHCl**3**–MeOH. **¹** H NMR (500 MHz, CDCl**3**): δ (ppm) 0.89 (s, 18H, *^t* Bu), 1.29 (s, 9H, *^t* Bu), 1.37 (s, 9H, *^t* Bu), 4.16 (s, 2H, NH), 4.54 (s, 2H, NH), 5.42 (s, 2H, NH), 6.71 (d, 2H, *J* = 2.1 Hz, ArH), 6.99 (d, 2H, *J* = 2.1 Hz, ArH), 7.55 (s, 2H, ArH), 7.86 (s, 2H, ArH); FTIR (KBr, cm-1): 3441 (NH), 3341 (NH), 2961 (CH).

TCAr-Pd(II) complex. A mixture of *p-tert*-butylthiacalix- [4]arene (H₄tcar, 0.10 g, 0.14 mmol), PhH (10 ml) and Pd(OAc)₂ (125 mg, 0.55 mmol) was heated at reflux for 6 h. After filtration, the residue was washed with hexane, then dried *in vacuo* to give a brown powder (30.2 mg, 27%). Single crystals for X-ray analysis were obtained by slow vapor diffusion of $CH₃CN$ into a 1,2-dichloroethane solution of the powder. H NMR (500 MHz, CDCl**3**): δ (ppm) 1.00 (s, 36H, *^t* Bu), 1.29 (s, 36H, *^t* Bu), 6.81 (d, 4H, *J* = 2.1 Hz, ArH), 7.24 (d, 4H, *J* = 2.1 Hz, ArH), 7.52 (d, 4H, *J* = 2.5 Hz, ArH), 7.59 (d, 4H, $J = 2.5$ Hz, ArH), 12.07 (s, 4H, OH); FTIR (KBr, cm⁻¹): 3431 (OH), 2963 (CH).

X-Ray structral analyses

Crystallographic structure determinations were performed on a Rigaku/MSC Mercury CCD diffractometer using Mo-Kα radiation ($\lambda = 0.71069$ Å). All calculations were performed using the software package TeXsan (v. 1.11).**¹¹** The structure was solved by direct methods with SIR92 **¹²** and refined by full-matrix leastsquares methods with SHELXL-97.**¹³** All non-hydrogen atoms were refined anisotropically.

Crystal data for TCAn-Pd(II). $C_{83.5}H_{103.5}S_8N_8Pd_2Cl_{10.5}$ $M = 2060.83$, monoclinic, $a = 16.0963(4)$, $b = 35.1851(4)$, $c = 17.7567(9)$ Å, $\beta = 104.0085(4)^\circ$, $U = 9757.4(6)$ Å³, $T = 230$ K, space group $P2_1/c$, $Z = 4$, μ (Mo-K α) = 8.72 cm⁻¹, 64044 reflections measured, 17047 unique $(R_{int} = 0.030)$. Final $R_1 = 0.052$ for 11045 data $[I > 2\sigma(I)]$ and $wR_2 = 0.150$ for all data.

Crystal data for TCAr-Pd(II). $C_{92}H_{124}O_{14}S_8N_4Pd_2Cl_4$, *M* = 2121.10, monoclinic, *a* = 13.0224(7), *b* = 31.4980(2), $c = 13.5987(7)$ Å, $\beta = 107.0044(4)^\circ$, $U = 5334.1(4)$ Å³, $T = 223$ K, space group $P2_1/c$, $Z = 2$, μ (Mo-K α) = 6.51 cm⁻¹, 65670 reflections measured, 10836 unique ($R_{int} = 0.032$). Final $R_1 = 0.041$ for 7592 data $[I > 2\sigma(I)], wR_2 = 0.119$ for all data.

CCDC reference numbers 192371 for TCAr-Pd(II) and 192372 for TCAn-Pd(II).

See http://www.rsc.org/suppdata/dt/b2/b208317e/ for crystallographic data in CIF or other electronic format.

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (No. 13450361) as well as by the Research for the Future Program from the Japanese Society for the Promotion of Science. H. K. acknowledges a Research Fellowship from the JSPS for Young Scientists.

References

- 1 J.-M. Lehn, *Supramolecular Chemistry, Concepts and Perspectives*, VCH, Basel, 1995.
- 2 R. Cacciapaglia and L. Mandolini, in *Calixarenes in Action*,

eds. L. Mandolini and R. Ungaro, Imperial College Press, London, 2000, p. 241.

- 3 H. Kumagai, M. Hasegawa, S. Miyanari, Y. Sugawa, Y. Sato, T. Hori, S. Ueda, H. Kamiyama and S. Miyano, *Tetrahedron Lett.*, 1997, **38**, 3971.
- 4 N. Iki and S. Miyano, *J. Inclusion Phenom. Macrocycl. Chem.*, 2001, **41**, 99.
- 5 (*a*) N. Iki, N. Morohashi, F. Narumi and S. Miyano, *Bull. Chem. Soc. Jpn.*, 1998, **71**, 1597; (*b*) N. Morohashi, N. Iki, A. Sugawara and S. Miyano, *Tetrahedron*, 2001, **57**, 5557.
- 6 (*a*) N. Iki, N. Morohashi, C. Kabuto and S. Miyano, *Chem. Lett.*, 1999, **3**, 219; (*b*) G. Mislin, E. Graf, M. W. Hosseini, A. Bilyk, A. K. Hall, J. M. Harrowfield, B. W. Skelton and A. H. White, *Chem. Commun.*, 1999, 373; (*c*) A. Bilyk, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, G. Mislin, B. W. Skelton, C. Taylor and A. H. White, *Eur. J. Inorg. Chem.*, 2000, 823; (*d*) A. Bilyk, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, B. W. Skelton and A. H. White, *Inorg. Chem.*, 2001, **40**, 672; (*e*) H. Akdas, E. Graf, M. W. Hosseini, A. De Cian, A. Bilyk, B. W. Skelton,

G. A. Koutsantonis, I. Murray, J. M. Harrowfield and A. H. White, *Chem. Commun.*, 2002, 1042.

- 7 H. Katagiri, N. Iki, T. Hattori, C. Kabuto and S. Miyano, *J. Am. Chem. Soc.*, 2001, **123**, 779.
- 8 H. Katagiri, N. Iki, Y. Matsunaga, C. Kabuto and S. Miyano, *Chem. Commun.*, 2002, 2080.
- 9 (*a*) R. G. Pearson, *J. Chem. Educ.*, 1968, **45**, 581; (*b*) R. G. Pearson, *J. Chem. Educ.*, 1968, **45**, 643.
- 10 L. A. Villanueva, K. A. Abboud and J. M. Boncella, *Organometallics*, 1994, **13**, 3921 and references therein.
- 11 TeXsan Single Crystal Structure Analysis Software, 1999. Molecular Structure Corporation, 3200 Research Forest Drive, The Woodlands, TX 77381, USA; Rigaku, 3-9-12 Akishima, Tokyo, Japan.
- 12 A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Crystallogr.*, 1994, **27**, 435.
- 13 G. M. Sheldrick, SHELXLS-97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, 1997.